
Dynamic Programming (square)

E-OLYMP 683. Partial matrix sum The matrix of integer aij is given, where 1 ≤ i

≤ n, 1 ≤ j ≤ m. For all i, j find

► Let а[i][j] be the input array, s[i][j] be the array of partial sums. We shall fill the

array s in ascending order of lines, and the cells in each row – in ascending order of

columns. Suppose we calculated this way all the values of s array till s[i][j].

1

1

i

j

Sij

i - 1

j - 1

= Si-1,j + Si,j-1 - Si-1,j-1 + aij

Si-1,j-1

Si-1,j

Si,j-1

Then s[i][j] = s[i – 1][j] + s[i][j – 1] – s[i – 1][j – 1] + aij.

Consider for the given example how to calculate the value of s[3][5].

1 2 3 4 5

5 4 3 2 1

2 3 1 5 4

1

2

3

1 2 3 4 5

aij

1 3 6 10 15

6 12 18 24 30

8 17 24 35 S3,5

1

2

3

1 2 3 4 5

Sij

s[3][5] = s[2][5] + s[3][4] – s[2][4] + a35 = 30 + 35 – 24 + 4 = 45

S3,5 =

1 2 3 4 5

5 4 3 2 1

2 3 1 5 4

S2,5 = 30

+

1 2 3 4 5

5 4 3 2 1

2 3 1 5 4

S3,4 = 35

-

1 2 3 4 5

5 4 3 2 1

2 3 1 5 4

S2,4 = 24

+ 4

a3,5

Exercise. For the given array aij compute the values of array sij.

https://www.e-olymp.com/en/problems/683

2 4 3 5 6

4 3 2 1 1

2 1 1 4 2

1

2

4

1 2 3 4 5

aij

1

2

4

1 2 3 4 5

Sij

35 4 6 3 33

Declare two two-dimensional arrays.

#define MAX 1001

int a[MAX][MAX], s[MAX][MAX];

Read the input data.

scanf("%d %d",&n,&m);

for(i = 1; i <= n; i++)

for(j = 1; j <= m; j++)

 scanf("%d",&a[i][j]);

Calculate the partial sums.

memset(s,0,sizeof(s));

for(i = 1; i <= n; i++)

for(j = 1; j <= m; j++)

 s[i][j] = s[i][j-1] + s[i-1][j] - s[i-1][j-1] + a[i][j];

Print the resulting array of partial sums.

for(i = 1; i <= n; i++)

{

 for(j = 1; j <= m; j++)

 printf("%d ",s[i][j]);

 printf("\n");

}

E-OLYMP 4018. Turtle There is a turtle in the left top corner of rectangular table

of size n × m. Each cell of the table contains some amount of acid. Turtle can move

right or down, its route terminates in right bottom cell of the table.

Each milliliter of acid brings turtle some amount of damage. Find the smallest

possible value of damage that will receive a turtle after a walk through the table.

► Let a[i][j] contains the amount of damage for the turtle after visiting the cell (i,

j). Let dp[i][j] contains the minimum possible damage for the turtle during the route

from (1, 1) to (i, j).

Consider the base cases:

 dp[1][1] = a[1][1];

 dp[i][1] = dp[i – 1][1] + a[i][1], 1 < i ≤ n (first column);

 dp[1][j] = dp[1][j – 1] + a[1][j], 1 < j ≤ m (first row);

https://www.e-olymp.com/en/problems/4018

One can get into the cell (i, j) either from (i – 1, j) or from (i, j – 1). Since the

damage is minimized, then

dp[i][j] = min(dp[i – 1][j], dp[i][j – 1]) + a[i][j]

dp[i][j-1] dp[i][j]

dp[i-1][j]

i

j

i - 1

j - 1

5 9 4 3

3 1 6 9

8 6 8 12

ail

5 14 18 21

8 9 15 24

16 15 23 45

dpil

First column:

 dp[2][1] = dp[1][1] + a[2][1] = 5 + 3 = 8,

 dp[3][1] = dp[2][1] + a[3][1] = 8 + 8 = 16.

First row:

 dp[1][2] = dp[1][1] + a[1][2] = 5 + 9 = 14,

 dp[1][3] = dp[1][2] + a[1][3] = 14 + 4 = 18.

Calculate the values of some non-border cells:

dp[2][2] = min(dp[1][2], dp[2][1]) + a[2][2] = min(14, 8) + 1 = 8 + 1 = 9

dp[3][4] = min(dp[2][4], dp[3][3]) + a[3][4] = min(24, 23) + 12 = 23 + 12 = 35

The desired path for the turtle is:

5 14 18 21

8 9 15 24

16 15 23 35

dpij

1

2

3

1 2 3 4

5 9 4 3

3 1 6 9

8 6 8 12

aij
1 2 3 4

1

2

3

Exercise. Given matrix a[i][j], find the values of matrix dp[i][j].

3 2 6 5

4 6 1 8

5 3 4 5

ail dpil
1 2 3 4

1

2

3

1

2

3

1 2 3 4

7 3 3 54 4

E-OLYMP 4019. Turtle restoring The turtle wants to pass the rectangular table

as quickly as possible from top left corner to bottom right corner along the route with

the least losses.

Print in the first line the minimal possible turtle’s damage. In the next lines print

the cells coordinates along which the appropriate path runs. Print the coordinates in the

order like they appear on the route.

► Let a[i][j] contains the amount of damage for the turtle after visiting the cell (i,

j). Let dp[i][j] contains the minimum possible damage for the turtle during the route

from (1, 1) to (i, j).

Consider the base cases:

 dp[1][1] = a[1][1];

 dp[i][1] = dp[i – 1][1] + a[i][1], 1 < i ≤ n (first column);

 dp[1][j] = dp[1][j – 1] + a[1][j], 1 < j ≤ m (first row);

One can get into the cell (i, j) either from (i – 1, j) or from (i, j – 1). Since the

damage is minimized, then

dp[i][j] = min(dp[i – 1][j], dp[i][j – 1]) + a[i][j]

Start the movement from the right lower corner (n, m) to the left upper corner (1,

1) along the path of minimum damage. Initialize (i, j) = (n, m). From the cell (i, j) we

can move either to (i – 1, j) or to (i, j – 1) depending on which of these values is less. If

dp[i – 1][j] = dp[i][j – 1], then the movement can be continued into any of these two

cells.

5 9 4 3

3 1 6 9

8 6 8 12

ail

5 14 18 21

8 9 15 24

16 15 23 45

dpil

5 14 18 21

8 9 15 24

16 15 23 45

path

Declare the arrays.

#define MAX 1010

int a[MAX][MAX], dp[MAX][MAX];

https://www.e-olymp.com/en/problems/4019

Read the input data.

scanf("%d %d", &n, &m);

for (i = 1; i <= n; i++)

for (j = 1; j <= m; j++)

 scanf("%d", &a[i][j]);

Initialize the first row and the first column of array dp.

dp[1][1] = a[1][1];

for (i = 2; i <= n; i++)

 dp[i][1] = dp[i - 1][1] + a[i][1];

for (j = 2; j <= m; j++)

 dp[1][j] = dp[1][j - 1] + a[1][j];

Find the minimum possible damage for the turtle for each cell.

for (i = 2; i <= n; i++)

for (j = 2; j <= m; j++)

 dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + a[i][j];

Print the minimum damage with which you can reach the lower right corner.

printf("%d\n", dp[n][m]);

Initialize (i, j) = (n, m). Start the movement from the right lower corner to the left

upper corner.

i = n; j = m;

Continue moving until we reach the first row or first column. Push the point (i, j)

into the path array.

while (i > 1 && j > 1)

{

 path.push_back(make_pair(i, j));

 if (dp[i - 1][j] + a[i][j] == dp[i][j]) i--; else j--;

}

Move to the cell (1, 1) either by the first row or by the first column.

while (i > 1) path.push_back(make_pair(i, j)), i--;

while (j > 1) path.push_back(make_pair(i, j)), j--;

path.push_back(make_pair(1, 1));

The path should be reversed.

reverse(path.begin(), path.end());

Print the path found.

for (i = 0; i < path.size(); i++)

 printf("%d %d\n", path[i].first, path[i].second);

E-OLYMP 4021. Knight move The rectangular board of size n × m (n rows and

m columns) is given. The chess knight is located in the left upper corner. You must

relocate it to the right lower corner. The knight can move only either two cells down

and one right, or one cell down and two cells right.

Find the number of knight paths from the left upper corner to the right lower

corner.

► Let dp[i][j] contains the number of ways to run from left upper corner – the cell

with coordinates (1, 1) into right lower corner – the cell with coordinates (n, m). Assign

zeroes to array dp and set dp[1][1] = 1.

According to the knight moves, we can come into cell (i, j) only either from (i – 1,

j – 2) or from (i – 2, j – 1). So

dp[i][j] = dp[i – 1][j – 2] + dp[i – 2][j – 1]

(i,j)

(i-1,j-2)

(i-2,j-1)

Fill the array dp for the board of size 7 * 7:

1 0 0

1 2 3

0 0 1

0 1 0

0 0 0

1

2

3

4

i \ j

0 0 15

0 0

4 5

0 0

0 1

2 0

0 0

0 0 00 0 0

0

0

0

0

0

0

0

0 0 06

0 0 07

0 3

1 0

0

0

0 0

6 7

0 0

0 0

0 1

3 0

0 0

0 0

0 0

E-OLYMP 1704. Clever turtle There is a field of cellular size m × n. The turtle

sits in the lower left corner. It can go only right or up. Before getting to the top right

https://www.e-olymp.com/en/problems/4021
https://www.e-olymp.com/en/problems/1704

corner, it is interested in the question: how many ways are there to get from the origin to

the upper right corner?

► Consider two dimensional array dp, where dp[i][j] equals to the number of ways

for the turtle to go from (1, 1) to (i, j). Let dp[1][1] = 1.

The turtle can get into the cell (i, j) either from (i – 1, j) or from (i, j – 1). Hence

dp[i][j] = dp[i – 1][j] + dp[i][j – 1]

(i,j)

(i-1,j)

(i,j-1)

Initialize array dp with 0. For us it will be significant to put zeros into zero line and

zero column of array dp. If for example i = 1, then dp[i – 1][j] = dp[0][j] = 0 and the

dynamic equation turns into dp[i][j] = dp[i][j – 1] (the first line is recalculated this way).

If j = 1, the dynamic equation turns into dp[i][j] = dp[i – 1][j] (the first column is

recalculated this way). Given that dp[1][1] = 1, one can conclude that all the cells of the

first line and of the first column will contain 1.

Fill the array dp for the field of the size 4 * 3:

1 1 1

1 2 3

1 2 3

1 3 6

1 4 10

1

2

3

4

0 0 0 0

0

0

0

0

0

i \ j 0

E-OLYMP 5101. Hodja Nasreddin Hodja Nasreddin is located in the upper left

corner of the table of the size n × n, and his donkey is located in the lower right corner.

Hodge goes only to the right or down, a donkey goes only to the left or up.

In how many ways they can meet in one cell? (Two ways are considered different

if Hodja or donkey has different routes).

► Let a[i][j] contains the number of ways for Hodja Nasreddin to go from (1, 1) to

(i, j).

Let b[i][j] contains the number of ways for donkey to go from (n, n) to (i, j).

The number of ways for Hodja Nasreddin and donkey to meet in the cell (i, j)

equals to a[i][j] * b[i][j]. To get the answer you need to find the sum of products

modulo 9929:


 


n

i

n

j

ijij ba
1 1

mod 9929

Let’s build the arrays for n = 3:

https://www.e-olymp.com/en/problems/5101

1 1 1

1 2 3

1 3 6

6 3 1

3 2 1

1 1 1

6 3 1

3 4 3

1 3 6

aij bij ijij ba 


 


3

1

3

1i j

ijij ba = (6 + 3 + 1) + (3 + 4 + 3) + (1 + 3 + 6) = 30

